Skip to main content

custom_graph_oneapi

"""
Example of custom graph using existing nodes
"""
from langchain_openai import OpenAIEmbeddings
from langchain_openai import ChatOpenAI
from scrapegraphai.graphs import BaseGraph
from scrapegraphai.nodes import FetchNode, ParseNode, RAGNode, GenerateAnswerNode, RobotsNode

# ************************************************
# Define the configuration for the graph
# ************************************************

graph_config = {
"llm": {
"api_key": "***************************",
"model": "oneapi/qwen-turbo",
"base_url": "http://127.0.0.1:3000/v1", # 设置 OneAPI URL
}
}

# ************************************************
# Define the graph nodes
# ************************************************

llm_model = ChatOpenAI(graph_config["llm"])
embedder = OpenAIEmbeddings(api_key=llm_model.openai_api_key)

# define the nodes for the graph
robot_node = RobotsNode(
input="url",
output=["is_scrapable"],
node_config={
"llm_model": llm_model,
"force_scraping": True,
"verbose": True,
}
)

fetch_node = FetchNode(
input="url | local_dir",
output=["doc"],
node_config={
"verbose": True,
"headless": True,
}
)
parse_node = ParseNode(
input="doc",
output=["parsed_doc"],
node_config={
"chunk_size": 4096,
"verbose": True,
}
)
rag_node = RAGNode(
input="user_prompt & (parsed_doc | doc)",
output=["relevant_chunks"],
node_config={
"llm_model": llm_model,
"embedder_model": embedder,
"verbose": True,
}
)
generate_answer_node = GenerateAnswerNode(
input="user_prompt & (relevant_chunks | parsed_doc | doc)",
output=["answer"],
node_config={
"llm_model": llm_model,
"verbose": True,
}
)

# ************************************************
# Create the graph by defining the connections
# ************************************************

graph = BaseGraph(
nodes=[
robot_node,
fetch_node,
parse_node,
rag_node,
generate_answer_node,
],
edges=[
(robot_node, fetch_node),
(fetch_node, parse_node),
(parse_node, rag_node),
(rag_node, generate_answer_node)
],
entry_point=robot_node
)

# ************************************************
# Execute the graph
# ************************************************

result, execution_info = graph.execute({
"user_prompt": "Describe the content",
"url": "https://example.com/"
})

# get the answer from the result
result = result.get("answer", "No answer found.")
print(result)