"""
Basic example of scraping pipeline using Code Generator with schema
"""
import os, json
from typing import List
from dotenv import load_dotenv
from pydantic import BaseModel, Field
from scrapegraphai.graphs import CodeGeneratorGraph
from langchain_community.llms import HuggingFaceEndpoint
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
load_dotenv()
class Project(BaseModel):
title: str = Field(description="The title of the project")
description: str = Field(description="The description of the project")
class Projects(BaseModel):
projects: List[Project]
HUGGINGFACEHUB_API_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN')
repo_id = "mistralai/Mistral-7B-Instruct-v0.2"
llm_model_instance = HuggingFaceEndpoint(
repo_id=repo_id, max_length=128, temperature=0.5, token=HUGGINGFACEHUB_API_TOKEN
)
embedder_model_instance = HuggingFaceInferenceAPIEmbeddings(
api_key=HUGGINGFACEHUB_API_TOKEN, model_name="sentence-transformers/all-MiniLM-l6-v2"
)
graph_config = {
"llm": {
"model_instance": llm_model_instance
},
"verbose": True,
"headless": False,
"reduction": 2,
"max_iterations": {
"overall": 10,
"syntax": 3,
"execution": 3,
"validation": 3,
"semantic": 3
},
"output_file_name": "extracted_data.py"
}
code_generator_graph = CodeGeneratorGraph(
prompt="List me all the projects with their description",
source="https://perinim.github.io/projects/",
schema=Projects,
config=graph_config
)
result = code_generator_graph.run()
print(result)