"""
Basic example of scraping pipeline using SmartScraper using Azure OpenAI Key
"""
import os
from dotenv import load_dotenv
from typing import Dict
from pydantic import BaseModel
from scrapegraphai.graphs import SmartScraperGraph
from scrapegraphai.utils import prettify_exec_info
from langchain_community.llms import HuggingFaceEndpoint
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
class Project(BaseModel):
title: str
description: str
class Projects(BaseModel):
Projects: Dict[str, Project]
load_dotenv()
HUGGINGFACEHUB_API_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN')
repo_id = "mistralai/Mistral-7B-Instruct-v0.2"
llm_model_instance = HuggingFaceEndpoint(
repo_id=repo_id, max_length=128, temperature=0.5, token=HUGGINGFACEHUB_API_TOKEN
)
embedder_model_instance = HuggingFaceInferenceAPIEmbeddings(
api_key=HUGGINGFACEHUB_API_TOKEN, model_name="sentence-transformers/all-MiniLM-l6-v2"
)
graph_config = {
"llm": {"model_instance": llm_model_instance},
}
smart_scraper_graph = SmartScraperGraph(
prompt="List me all the projects with their description",
source="https://perinim.github.io/projects/",
schema=Projects,
config=graph_config
)
result = smart_scraper_graph.run()
print(result)
graph_exec_info = smart_scraper_graph.get_execution_info()
print(prettify_exec_info(graph_exec_info))