Skip to main content

scrape_plain_text_huggingfacehub

""" 
Basic example of scraping pipeline using SmartScraper from text
"""

import os
from dotenv import load_dotenv
from scrapegraphai.graphs import SmartScraperGraph
from scrapegraphai.utils import prettify_exec_info
from langchain_community.llms import HuggingFaceEndpoint
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings

load_dotenv()

# ************************************************
# Read the text file
# ************************************************

FILE_NAME = "inputs/plain_html_example.txt"
curr_dir = os.path.dirname(os.path.realpath(__file__))
file_path = os.path.join(curr_dir, FILE_NAME)

# It could be also a http request using the request model
with open(file_path, 'r', encoding="utf-8") as file:
text = file.read()

# ************************************************
# Define the configuration for the graph
# ************************************************

HUGGINGFACEHUB_API_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN')

repo_id = "mistralai/Mistral-7B-Instruct-v0.2"

llm_model_instance = HuggingFaceEndpoint(
repo_id=repo_id, max_length=128, temperature=0.5, token=HUGGINGFACEHUB_API_TOKEN
)

embedder_model_instance = HuggingFaceInferenceAPIEmbeddings(
api_key=HUGGINGFACEHUB_API_TOKEN, model_name="sentence-transformers/all-MiniLM-l6-v2"
)

# ************************************************
# Create the SmartScraperGraph instance and run it
# ************************************************

graph_config = {
"llm": {"model_instance": llm_model_instance},
}

# ************************************************
# Create the SmartScraperGraph instance and run it
# ************************************************

smart_scraper_graph = SmartScraperGraph(
prompt="List me all the projects with their description.",
source=text,
config=graph_config
)

result = smart_scraper_graph.run()
print(result)

# ************************************************
# Get graph execution info
# ************************************************

graph_exec_info = smart_scraper_graph.get_execution_info()
print(prettify_exec_info(graph_exec_info))