"""
Basic example of scraping pipeline using ScriptCreatorGraph
"""
import os
from dotenv import load_dotenv
from scrapegraphai.graphs import ScriptCreatorMultiGraph
from scrapegraphai.utils import prettify_exec_info
from langchain_community.llms import HuggingFaceEndpoint
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
load_dotenv()
HUGGINGFACEHUB_API_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN')
repo_id = "mistralai/Mistral-7B-Instruct-v0.2"
llm_model_instance = HuggingFaceEndpoint(
repo_id=repo_id, max_length=128, temperature=0.5, token=HUGGINGFACEHUB_API_TOKEN
)
embedder_model_instance = HuggingFaceInferenceAPIEmbeddings(
api_key=HUGGINGFACEHUB_API_TOKEN, model_name="sentence-transformers/all-MiniLM-l6-v2"
)
graph_config = {
"llm": {"model_instance": llm_model_instance},
}
urls=[
"https://schultzbergagency.com/emil-raste-karlsen/",
"https://schultzbergagency.com/johanna-hedberg/",
]
script_creator_graph = ScriptCreatorMultiGraph(
prompt="Find information about actors",
source=urls,
config=graph_config
)
result = script_creator_graph.run()
print(result)
graph_exec_info = script_creator_graph.get_execution_info()
print(prettify_exec_info(graph_exec_info))