π½ SearchGraph Module
The SearchGraph
module defines a class for creating and executing a graph that searches the internet for answers to a given prompt.
Classesβ
SearchGraph
β
SearchGraph
is a scraping pipeline that searches the internet for answers to a given prompt. It only requires a user prompt to search the internet and generate an answer.
Attributesβ
- prompt (str): The user prompt to search the internet.
- llm_model (dict): The configuration for the language model.
- embedder_model (dict): The configuration for the embedder model.
- headless (bool): A flag to run the browser in headless mode.
- verbose (bool): A flag to display the execution information.
- model_token (int): The token limit for the language model.
Methodsβ
-
__init__(self, prompt: str, config: dict, schema: Optional[str] = None)
- Initializes the
SearchGraph
with a prompt, configuration, and schema. - Args:
prompt (str)
: The user prompt to search the internet.config (dict)
: Configuration parameters for the graph.schema (Optional[str])
: The schema for the graph output.
- Initializes the
-
_create_graph(self) -> BaseGraph
- Creates the graph of nodes representing the workflow for web scraping and searching.
- Returns: An instance of
BaseGraph
.
-
run(self) -> str
- Executes the web scraping and searching process.
- Returns: The answer to the prompt.
Example Usageβ
Here is an example of how to use the SearchGraph
class:
from search_graph import SearchGraph
# Define the prompt and configuration
prompt = "What is Chioggia famous for?"
config = {
"llm": {"model": "gpt-3.5-turbo"}
}
# Create the search graph
search_graph = SearchGraph(prompt, config)
# Run the search graph
result = search_graph.run()
print(result)